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Foreword
by Michael J. Petrilli
The Covid-19 pandemic has run roughshod over so much of our education system, closing 
schools, sending students home to try to learn remotely, and obliterating last year’s summative 
state tests. One consequence of that cancellation is that even if students are tested this spring, 
it will still be impossible to construct typical measures of their learning growth, as most such 
measures incorporate the previous year’s score. As fanatics for student growth measures—
given that they are the fairest and most accurate metrics of schools’ impacts on achievement—
we wanted to know if some kind of value-added calculations could still be produced despite 
the testing gap year. Such measures would provide helpful information about which districts, 
schools, and students have progressed the most and which have experienced the worst Covid-
induced learning loss during the pandemic. That would help us identify schools and practices 
worth emulating, and highlight institutions where students need the most help once Covid-19 is 
behind us.

To investigate the feasibility of this, we turned to a team of researchers in the department of 
economics at the University of Missouri—Ishtiaque Fazlul, Cory Koedel, Eric Parsons, and Cheng 
Qian—who have many years of experience studying how best to measure achievement growth. 
The team used administrative data from Missouri to simulate the testing gap year that states 
face as a result of Covid-19, and to generate ideas about how to work through it. Using data from 
the 2016–17 through 2018–19 school years, they calculated growth over two years to determine 
how similar gap-year estimates are to the “business-as-usual” condition where testing data are 
available every year.

Their results, explained in detail in this report, speak to the feasibility of estimating two-year 
growth measures for districts and for schools, including technical suggestions for handling thorny 
data issues. The researchers also go on to assess the feasibility of growth measures when two 
years of test scores are missing, simulating the condition if spring 2021 testing is also cancelled. 

There’s good news and bad news.

•	 Happily, both district- and school-level growth estimates based on a single-year gap 
convey information that’s very similar to growth estimates based on data with no gap 
year. Rankings of districts and schools only change slightly when a gap year in testing 
is simulated, and demographic factors such as race and socioeconomic status are not 
predictive of such changes. This analysis also suggests that such estimates will be valid for 
large subgroups such as economically disadvantaged students. (We can’t say whether that 
will be the case for smaller subgroups.) 

•	 But there’s bad news, too. Just 27 percent of students attend schools that could 
generate growth measures if two consecutive years of tests are missing. That’s because 
most students in the standard testing window (grades three through eight) who were 
tested in 2019—the last time statewide assessments were implemented—will be in different 
schools by the spring of 2022. (For example, third graders in 2019 will be sixth graders in 
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2022, which in most districts will make them middle schoolers.) If we want to have any 
school-level measures of student progress in the near future, it’s vitally important that 
states assess students in 2021. (District growth measures will be doable, and relatively 
accurate, with another year of missing test data.)

In practical terms, what does this mean?

Calculating student growth measures from 2019 to 2021 is eminently feasible, and the results will 
be quite accurate—so long as states test students this year. Those measures will provide essential 
information to guide the educational recovery phase. 

But if states cancel testing this year, too, it will be extremely difficult to determine how effective 
individual schools were during this challenging, historic period in American education. And of 
course, it will further delay the time until we can restart measuring student progress and holding 
schools accountable again. 

To be sure, we understand the challenge of testing students during a pandemic. Though the 
miraculous vaccines are offering light at the end of a long and dark tunnel, it’s hard to predict 
exactly how the next few months will unfold. Even if teachers are vaccinated and students are 
welcomed back for in-person learning, some families will likely want their children to remain 
home until they are vaccinated, too. And taking precious days out of the instructional calendar for 
testing this spring—just when schools can finally start to address students’ social and emotional 
needs, and significant learning losses—is a hard sell, even for testing-and-accountability hawks 
like us.

So allow me to make a humble suggestion (albeit one not proposed by the study’s authors): 
States should shift the spring 2021 assessments to fall 2021 when schools reopen. This will allow 
them to compute those all-important student growth measures for the 2019–21 period, plus 
establish a baseline for student progress during the 2021–22 school year. To be sure, some states 
will be better equipped to manage this move than others, particularly those that don’t now 
legislatively mandate testing in the spring and that have enough internal capacity to acclimate 
schools effectively to new fall assessment schedules.

If they start now, they’ve got nine months to put revised policies in place. With mere weeks to 
throw together plans when Covid-19 first descended in March 2020, that should feel like a lifetime 
to state and local education officials today. 
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Introduction
State testing programs across the U.S. were halted in the spring of 2020 in response to the 
Covid-19 pandemic. Virus-induced uncertainty in the education system has persisted into the 
2020–21 academic year, with states and districts implementing—and often modifying—a variety of 
instructional models ranging from fully remote to fully in person, with hybrid options in between. 
As of this writing, it is still unclear which states will conduct end-of-grade testing this year.1

Where testing does resume in spring 2021, the question of whether and how to resume the 
measurement of achievement growth will arise. Measuring growth is obviously not the top priority 
for state and local education agencies navigating the pandemic, but it remains important—
arguably more so in light of the circumstances. This is because growth data are widely viewed 
as the most reliable data for assessing individual student learning and the efficacy of districts 
and schools. Families and educators have responded in a variety of ways to the pandemic, 
resulting in a diverse range of student learning experiences. Growth data are our best hope 
for understanding which students have been most affected by the pandemic, where learning 
deficiencies are most pronounced, and which district and school policy responses have been most 
effective in minimizing the negative consequences of Covid-induced instructional changes.

However, the 2020 testing gap poses a clear problem 
for measuring test-score growth. Traditional growth 
measures from 2018–19 to 2019–20 and 2019–20 to 
2020–21 cannot be constructed. Given the testing gap, 
we consider the prospects for estimating growth over a 
two-year period, assuming that states resume testing 
this spring. The “gap-year” growth data would span 
the period from spring 2019 to spring 2021. Considering 
the possibility that some states may cancel a second 
consecutive year of testing, we also conduct a brief 
analysis to assess the prospects for estimating growth 
over a three-year period.

Our objective is to gain insight into how well a gap-year growth model using data from 2019 and 
2021 will perform compared to a hypothetical “business-as-usual” condition in which annual 
testing data were available from spring tests in 2019, 2020, and 2021. To do this, we analyze 
administrative data from Missouri spanning the pre-Covid 2016–17 to 2018–19 school years. We 
simulate the data condition of a gap year in testing by artificially censoring the 2017–18 test data 
as if a gap year had occurred, and we then produce two-year growth estimates using spring tests 
from 2017 and 2019 for schools and districts. Because there was no true test gap, we can compare 
growth estimates based on the gap-year data to growth estimates obtained using all of the 
annual testing data over the sample period. This allows us to document the consequences of the 
gap year in terms of deviations of the growth estimates from the business-as-usual condition.

We focus our analysis on the prospects for estimating school- and district-level growth metrics. 
These metrics are important for several reasons. First, for the many states that incorporate 
growth into school and district accountability systems, understanding how well we can model 

Growth data are 
our best hope for 
understanding which 
students have been 
most affected by the 
pandemic...
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growth with a gap year in the data is important for making decisions about these systems in 
2021. Second, variation in school- and district-level growth during the pandemic can be used to 
identify locales where students have been the most and least impacted by Covid. This is important 
information for planning intervention and remediation. Moreover, because school- and district-
level growth measures can be linked with data on schools’ and districts’ instructional responses 
to the pandemic, they can be used to assess the efficacy of different strategies for minimizing the 
learning costs of Covid.

A caveat to our analysis is that it is most directly informative about a scenario where there is 
a missing year of test data, but after the gap year, we return to a condition in which (virtually) 
all students are tested. Currently there is still uncertainty about whether testing will happen in 
spring 2021, and if it does, there is even more uncertainty about which students will be tested and 
via what mode (e.g., in person or online). Our view is that there is too much uncertainty at this 
juncture over these questions for ex ante modeling of this process to be fruitful, but this issue 
bears monitoring as spring 2021 testing rolls out. Regardless, our analysis establishes a baseline 
degree of the credibility of gap-year growth estimates, pending the assessment of other aspects 
of state testing efficacy this spring.
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Methodology
Estimating value added
We estimate school- and district-level growth using value-added models (VAMs) based on 
student test scores in math and English language arts (ELA) during grades 4 through 8.2 We 
consider two modeling structures: (1) a one-step VAM and (2) a two-step VAM. Both modeling 
structures are common in research and policy applications.3 Within each structure, we estimate 
models with varying degrees of controls for student characteristics and school/district 
circumstances. 

Table 1 describes the models and their features.4 The sparse models in columns (1) and (2) control 
for just lagged student achievement in math and ELA. We control for lagged achievement in both 
subjects, and students must have a lagged score in the same subject to be included in the analytic 
dataset. The models with student controls in columns (3) and (4) additionally include indicator 
variables for student race/ethnicity, gender, free/reduced-price lunch status, English language 
learner status, special education status, and mobility status. For the latter variable, we define a 
student as “mobile” if the student is observed for less than one year in the school where the test 
is taken. The model in column (5) additionally includes school- and district-level averages of the 
lagged test-score and student-characteristic variables to control for the schooling environment.

Table 1. The five value-added models we study differ by the extent of the control 
variables included and the modeling structure.

Structure

(1) (2) (3) (4) (5)

1-Step, 
Sparse

2-Step, 
Sparse

1-Step, 
Student 
Controls

2-Step, 
Student 
Controls

2-Step,  
All 

Controls
Student Lagged Test Scores (Math and ELA)     

Individual Student Characteristics   

School- and District-Average Student Characteristics 

Notes. All models also include fixed effects for student grade levels. The individual student characteristic controls 
are for race/ethnicity, gender, free/reduced-price lunch eligibility status, English language learner status, special 
education status, and mobility status. The school- and district-average characteristics are of these same variables and 
lagged achievement, to control for the schooling environment. The precise equations describing these models are 
available in Fazlul et al. (2021).
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We attribute student growth to the contemporary school or district in all models. This is the 
common approach under normal circumstances—i.e., growth from year (t−1) to year t is attributed 
to the year t school or district. In the gap-year models, this is a potential concern because there 
is extra mobility during the gap year. In our baseline estimation condition, we do not make any 
adjustments to the gap-year models to account for the extra mobility, but later we examine the 
sensitivity of our findings to such adjustments.

Two aspects of model heterogeneity are noteworthy. First, the models differ in the level of control 
variables included, ranging from the sparse models in columns (1) and (2) of Table 1 to the very 
rich specification with detailed student-, school-, and district-level controls in column (5). Second, 
the one-step and two-step structures differ in how aggressively they control for student-, school-, 
and district-level factors that may influence test scores. The two-step model is more aggressive in 
this regard.5

All of the value-added estimates from these models are “shrunken” post hoc to reduce the 
influence of estimation error. Shrinkage is a statistical procedure that pulls (i.e., shrinks) the 
estimates for individual schools and districts toward the average, with the power of the pull 
dependent on the reliability of the individual estimate. The end result is that small schools 
and districts will be pulled toward the mean more strongly than their larger counterparts. This 
embodies the Bayesian notion that in the absence of information to the contrary, our best guess is 
that any individual school or district is “average” in terms of value added. Shrinkage is a common 
tool used in the value-added literature.6

It is beyond the scope of this report to delve into the technical and policy tradeoffs of the various 
models, but interested readers can find discussions of these tradeoffs in the research literature on 
value-added modeling.7

Simulating the gap year in testing
For each of the models shown in Table 1, we estimate value added with and without the gap-year 
data censoring in place. We begin by using the uncensored data to estimate two consecutive 
value-added estimates for each unit (either a school or a district) with data from 2016–17 to 2017–18 
and 2017–18 to 2018–19. We then sum the two single-year estimates to produce an estimate of 
value added over the two-year period. This process is meant to replicate how a typical system 
would estimate value added over two years, assuming all data were available.

Next, to simulate the gap year in testing, we censor the 2017–18 test data and directly estimate 
value added using data from 2016–17 and 2018–19. This scenario is meant to reflect the data 
condition assuming that testing resumes in spring 2021—i.e., the condition of a gap year between 
the 2018–19 and 2020–21 tests. By comparing the full-data scenario to the gap-year scenario, we 
assess the potential for the gap-year models to recover accurate estimates of test-score growth 
over the two-year period.
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We also compare our gap-year estimates using the censored data to value-added estimated for 
the single year from 2017–18 to 2018–19. Mapping this scenario to the current situation with Covid, 
it informs the following question: How effective would it be if gap-year growth from 2018–19 to 
2020–21 were used to proxy for what growth would have been from 2019–20 to 2020–21? We do not 
view this as a desirable policy use of the censored data, but we show the results in the appendix 
for completeness. (Appendix A also describes why we are not in favor of this approach.)

Finally, we extend our analysis to simulate the effect of two consecutive gap years in testing, which 
will happen if testing does not occur in spring 2021 and resumes in spring 2022. For this extension, 
we censor the test data in our panel in 2016–17 and 2017–18 and calculate growth from 2015–16 to 
2018–19. We then compare growth estimated over the three-year period to the analogous full-
data condition, where three-year growth is calculated as the sum of annual growth estimates from 
2015–16 to 2016–17, 2016–17 to 2017–18, and 2017–18 to 2018–19.

Data
Our analysis is based on administrative microdata from Missouri covering all students tested in 
grades 3 to 8 in math and ELA during the school years 2015–16 through 2018–19. Hereafter, we 
identify schools by the spring year (e.g., 2018–19 as 2019).8

We standardize student test scores throughout by grade-subject-year and estimate growth for 
all districts and schools with at least ten students in each model and scenario. When we correlate 
and otherwise compare growth estimates using the full data and gap-year data, the comparisons 
are restricted to districts and schools that meet the size threshold in both data conditions. Only 
very small Missouri districts and schools are omitted from our analysis due to the sample size 
restriction.9

We do not expect contextual features of Missouri to limit the generalizability of our findings in 
most respects. That said, two aspects of the Missouri data merit mention. First, Missouri changed 
its math and ELA tests once each between 2016 and 2019. A previous study explored the impact 
of test-regime changes on value-added estimates in math and ELA across multiple states and 
found that such changes typically do not affect model performance substantively.10 Moreover, we 
have performed internal diagnostic work using the Missouri data specifically that supports this 
inference.11

Second, Missouri is a “small district” state, and growth estimates for smaller districts will be more 
sensitive to data changes because they have fewer students to balance out the sampling variance 
that the data changes create. To improve the generalizability of our findings to states with larger 
school districts, we also produce separate estimates for a subsample of the 100 largest districts in 
Missouri. Table 2 summarizes our data in terms of students, schools, and districts.
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Table 2. Summary statistics for students, schools, and districts in the analytic sample

Mean SD Min Max
Student information
Standardized Math Score 0.016 0.991 –5.978 5.281
Standardized ELA Score 0.016 0.991 –5.389 6.146

Asian 0.021 0.144 0.000 1.000
Black 0.156 0.363 0.000 1.000
Hispanic 0.065 0.247 0.000 1.000
White 0.714 0.452 0.000 1.000
Multiple and Other Race/Ethnicity 0.044 0.197 0.000 1.000

Female 0.490 0.500 0.000 1.000

Eligible for Free/Reduced-Price Lunch 0.521 0.500 0.000 1.000
English Language Learner 0.049 0.217 0.000 1.000
Individualized Education Program 0.130 0.336 0.000 1.000
Mobile Student 0.040 0.196 0.000 1.000
School Information
Urban 0.175 0.380 0.000 1.000
Suburban 0.239 0.427 0.000 1.000
Rural/Town 0.496 0.500 0.000 1.000
Enrollment 357.0 217.4 12.0 1,728.0
District Information
Enrollment (All) 1,603.2 3,194.1 18.0 24,955.0
Avg. Number of Schools (All) 4.2 6.1 1.0 76.0
Enrollment (Large District Subsample) 6,321.8 5,332.5 839.0 24,955.0
Avg. Number of Schools (Large District Subsample) 12.4 11.0 2.0 76.0

N (Student Years, 2017–19) 972,877
N (Unique Schools, 2017–19) 1,730
N (Unique Districts, 2017–19) 557

Notes. These summary statistics are based on the analytic sample of students in grades 4 to 8 with lagged test scores 
in 2016–17, 2017–18, and 2018–19 who attend districts and schools with at least ten test takers. Urbanicity information 
is taken from the 2018–19 Common Core of Data. The large-district subsample is selected to include the 100 districts 
in Missouri with the largest populations of test takers included in the gap-year model. Other size-based selection 
criteria produce a similar sample; we chose this criterion in order to isolate districts in Missouri with the largest 
samples relevant for our primary analysis.
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Results
What happens to district-level growth data with a gap year?

Finding 1: District growth estimates based on a single-year gap convey 
similar information to growth estimates based on data with no 
gap year.

We begin in Figure 1 by reporting correlations between district-level growth estimates over 
the two-year period spanning the gap year, with and without the gap-year data censoring. 
The growth models correspond to those described in Table 1 (above). Each bar represents the 
correlation between the output of the specified model with and without data censoring in place. 
Recall that in the full-data condition, we estimate value added from 2017 to 2018 and then 2018 to 
2019 and sum the two, to arrive at an estimate of two-year growth. With the gap year, we directly 
estimate growth from 2017 to 2019.

Figure 1. District-level growth estimates over the two-year period spanning the gap 
year, with and without the gap-year data censoring, are highly correlated.

Math ELA

0.5 0.6 0.7 0.8 0.9 1.0
Correlation

1-Step, Sparse

2-Step, Sparse

1-Step, Student Controls

2-Step, Student Controls

2-Step, All Controls

0.5 0.6 0.7 0.8 0.9 1.0
Correlation

1-Step, Sparse

2-Step, Sparse

1-Step, Student Controls

2-Step, Student Controls

2-Step, All Controls

Note. For details on the models, see Methodology.

Figure 1 shows that the growth estimates are highly correlated—the correlation coefficients across 
models in both math and ELA are consistently around 0.90. The correlations for the math models 
are slightly higher. A summary takeaway is that growth estimates based on gap-year data convey 
similar information to growth estimates based on all the data. 
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The correlations in Figure 1 are high, but one might wonder why they aren’t even higher. After 
all, both the full-data and gap-year estimates are meant to capture growth over the same two-
year period. There are two primary reasons that the growth estimates differ. First, the cohorts 
of students who contribute to the estimates in each condition are not identical. For example, 
students in the eighth grade in 2018 (the censored year) will contribute to business-as-usual 
growth estimated with the full dataset from 2017 to 2018 but will not contribute to gap-year 
growth because in 2019 they are outside of the tested grade span. Second, there is some gap-
induced modeling and estimation variance—most notably, the predictive power of lagged 
achievement over contemporary achievement varies depending on the presence of the gap year, 
and correspondingly, this can affect the predictive power of the other control variables.12

Finding 2: The overwhelming majority (86 to 88 percent) of districts do 
not change ranking categories due to the gap year in the data.

Table 3 uses transition matrices to document the stability of district rankings based on test-
score growth in math (panel A) and ELA (panel B) between the business-as-usual and gap-year 
conditions. The transition matrices emphasize ranking changes in the tails of the distribution—
i.e., the top and bottom 10 percent of districts—with the rationale that many policy applications 
focus on the distribution tails rather than the center. The rows of each matrix indicate district 
placements in the full-data growth rankings, divided into groups of “bottom 10 percent,” “middle 
80 percent,” and “top 10 percent.” The columns divide districts into the same groups based on 
their rankings using gap-year growth estimates. 

Table 3. Transition matrices show that the ranking category does not change for 
most districts due to the gap year in testing (results shown only for the two-step 
all-controls model for brevity).

Panel A. Math

Gap-year Data Growth Ranking
Bottom 10 Percent Middle 80 Percent Top 10 Percent

Full Data Growth 
Ranking

Bottom 10 Percent 6.7 3.3 0.0
Middle 80 Percent 3.3 73.9 2.8

Top 10 Percent 0.0 2.8 7.2

Panel B. ELA

Gap-year Data Growth Ranking
Bottom 10 Percent Middle 80 Percent Top 10 Percent

Full Data Growth 
Ranking

Bottom 10 Percent 6.3 3.7 0.0
Middle 80 Percent 3.7 73.0 3.3

Top 10 Percent 0.0 3.3 6.7

Notes. Each cell indicates the percentage of Missouri districts for which the ranking profile matches the row and 
column headers. The transition matrices for the other VAMs are very similar to the transition matrices shown here. 
They are suppressed for brevity but can be found in Fazlul et al. (2021).
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The value in each cell indicates the percent of districts for which the rankings in the full-data and 
gap-year conditions fit the profile indicated by the row and column. The sum of the cells in each 
transition matrix is 100 by construction. If the full-data and gap-year models produced identical 
output, the diagonal elements of the transition matrices would have values of 10-80-10 and the 
off-diagonal elements would have values of zero. Thus, nonzero off-diagonal entries provide an 
indication of disagreement between the growth estimates. In this way, the transition matrices are 
complementary to the correlations presented above.13

The overwhelming majority of the weight in each transition matrix in Table 3 is on the 
diagonal—86 to 88 percent of districts remain in the same ranking category regardless of whether 
the full data or gap-year data are used. The districts that change categories are relatively close 
to the 90th and 10th percentile cutoffs; among these districts, the average value of the percentile 
ranking change is about ten percentile points—e.g., a district that moves from the 85th to 95th 
percentile in the ranking distribution between models. 

Finding 3: Student subgroup growth estimates based on gap-year data 
can be reliably estimated.

To get a sense of the applicability of these methods for estimating district-level growth by student 
subgroup, we split the sample by student socioeconomic status and conduct the same analysis 
as above (Figure 2).14 The results show the gap-year and full-data growth estimates are highly 
correlated in the split samples. The correlations are attenuated relative to Figure 1, but this is likely 
the result of the fact that we’re using smaller samples in the split analysis than in the full analysis.

We conclude from these results that differences in student growth across student subgroups can 
be tracked using gap-year growth data with only modest consequences in terms of estimation 
accuracy. Note that state-aggregated subgroup comparisons will be even easier to make in order 
to assess statewide growth gaps along various dimensions.
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Figure 2. For student data disaggregated by socioeconomic status, the correlations 
remain high for the district-level growth estimates with and without the gap-year data 
censoring.

Math ELA

0.5 0.6 0.7 0.8 0.9 1.0
Correlation

1-Step, Sparse

2-Step, Sparse

1-Step, Student Controls

2-Step, Student Controls

2-Step, All Controls

More Affluent
Less Affluent

0.5 0.6 0.7 0.8 0.9 1.0
Correlation

1-Step, Sparse

2-Step, Sparse

1-Step, Student Controls

2-Step, Student Controls

2-Step, All Controls

More Affluent
Less Affluent

Note. We refer to students coded as ineligible for free or reduced-price lunch as “more affluent” and those who are 
coded as eligible as “less affluent.” For details on the models, see Methodology.

Finding 4: Most of the changes to districts’ growth rankings caused 
by the gap year are not associated with observable district 
characteristics.

Next, we assess whether district characteristics systematically predict ranking changes between 
the full-data and gap-year conditions. There is not a strong theoretical reason to expect districts’ 
characteristics to predict the direction of growth ranking changes due to the gap year. For 
example, as noted above, the changes are partly driven by the use of nonoverlapping cohorts 
to produce the full-data and gap-year estimates. Unless one believes that some cohorts of 
students (e.g., third-grade students in 2018) are systematically different from other cohorts in 
the same districts (e.g., fourth-grade students in 2018), this source of ranking discrepancies 
should not be consistently predictable with district characteristics. As for the other source of 
ranking discrepancies—modeling and estimation variance—ex ante we do not expect district 
characteristics to systematically drive fluctuations via this channel either. However, ex post, 
after the model is estimated, changes in the coefficients can lead to ranking changes that are 
correlated with district characteristics.

To test whether district characteristics predict ranking changes, we regress the ranking percentile 
change—i.e., the growth ranking percentile based on the gap-year data minus the growth ranking 
percentile based on the full data—on the following district characteristics: the district average 
same-subject test score in 2017, racial-ethnic composition, district enrollment, and the shares of 
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students who (a) are eligible for free or reduced-price lunch, (b) are classified as English learners, 
(c) have an individualized education program (IEP), and (d) are mobile. We use two definitions 
for mobility. The first is our standard measure, which is whether the student attended the school 
where the year-t test occurred for less than one year. The second is the share of students who 
attended more than one district in 2018 and 2019 (i.e., the gap year and subsequent year). These 
students are of particular interest for the comparison of models because the gap-year models, 
under the baseline estimation conditions without any adjustments for student mobility, will have 
more misclassification errors because they attribute all growth over the two-year period to the 
year-t district.

We also regress the absolute value of the growth ranking changes on the same district 
characteristics to look for predictors of ranking volatility. There is also little reason to expect 
most district characteristics to predict ranking volatility between models, with the exceptions of 
(a) district enrollment, because larger districts should be less sensitive to sample changes caused 
by the gap year, and (b) the share of students who attended more than one district in 2018 and 
2019, because the models differ in how they attribute growth to districts for these students.

Figure 3 shows the R-squared values from our regressions of the directional ranking changes on 
district characteristics, which indicate the fraction of the variance in ranking changes that can be 
explained by our host of district characteristics. In the first four models in the figure (one-step 
sparse through two-step student controls), the R-squared values are in the range of 0.23 to 0.25 
in math and 0.14 to 0.18 in ELA. This means that about 75 to 78 percent of the ranking changes in 
the math models and 82 to 86 percent of the ranking changes in ELA are not explained by any of 
the observable district characteristics. Even less of the variance in ranking changes—only about 5 
percent in math and 4 percent in ELA—is explained by district characteristics in the two-step all-
controls model, highlighting an advantage of this approach. The finding that most of the ranking 
fluctuations are unexplained by observable district characteristics—in all models, but especially 
the two-step all-controls model—is consistent with our theoretical prediction stated above.15

Figure 3. Most of the changes to districts’ growth rankings caused by the gap year are 
not explained by observable district characteristics. This is especially true for the two-
step all-controls model.
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Figure 4 reports corresponding R-squared results from the same regressions, except where the 
dependent variable is the absolute value of each district’s ranking change. Whereas Figure 3 
is informative about the directional predictive power of the district characteristics, Figure 4 is 
informative about their ability to predict ranking volatility (without regard to direction). Figure 4 
shows that district characteristics explain almost none of the variance in the volatility of district 
rankings between models.

Figure 4. Most of the volatility in districts’ growth rankings (i.e., the absolute value of 
the ranking changes) caused by the gap year is not explained by observable district 
characteristics.
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Finding 5: The results for the subsample of large districts largely mirror 
the results for all districts, although the large-district growth 
estimates using the gap-year data are even more accurate.

Figure 5 replicates the results in Figure 1 for the large-district sample only. The correlations are 
generally higher for the large districts across models and estimation scenarios. This is expected, 
given the larger district-level samples. These results show that growth estimates for larger districts 
will be affected even less by the use of gap-year data relative to the business-as-usual condition.16

Figure 5. For the subsample of large districts, the correlations of the district-level 
growth estimates with and without the gap-year data censoring are even higher.
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Note. For details on the models, see Methodology.

Finding 6: Modifications to the gap-year model to account for student 
mobility during the gap period do not meaningfully affect 
growth estimates for districts. 

We anticipated that differences in how student mobility is treated might cause our results to differ 
across data conditions, but we find little evidence of such in our district-level analysis. To illustrate, 
consider a student who attends District A in 2017 and 2018 but district B in 2019. In the business-
as-usual VAM, her growth from 2017 to 2018 will be attributed to District A and her growth from 
2018 to 2019 will be attributed to District B. However, using the convention of assigning growth to 
the contemporary district, in the gap-year model her growth over the full two-year period will be 
attributed to District B.
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We explore the mobility issue empirically in Figure 6, where we compare our baseline correlations 
from Figure 1 to analogous correlations after we make adjustments to the gap-year models 
for student mobility. We consider two data adjustments, which are both applied to the gap-
year models only. In the first, we drop all students who were not enrolled in the same district in 
period t−1 and t—i.e., in 2018 and 2019 in our censored dataset. These students only attended 
the contemporary district for one of the two years over which gap-year growth is estimated, 
meaning that their growth over the full period is partially misattributed. The full-data models still 
include all students and assign single-year growth to the contemporary district, which would be 
the business-as-usual approach and is facilitated by the availability of the 2018 test score. In the 
second mobility modification, we retain all mobile students in the gap-year dataset but assign 50 
percent weight to the districts attended in 2018 and 2019, respectively.17

Figure 6. Modifications to the gap-year models to account for student mobility have a 
negligible impact on the accuracy of district-level growth estimates.
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Note. For details on the models, see Methodology.

Figure 6 shows that although extra mobility over the two-year period is conceptually concerning, 
corrections to account for mobility differently in the gap-year models do not meaningfully change 
the accuracy of the district growth estimates. To preview the school-level results—and noting that 
the cross-school mobility rate is much higher—the shared-credit solution (i.e., 50 percent weight) 
improves the correlations modestly.
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What happens to school-level growth data with a gap year?
Next, we replicate the analysis above for schools. The structure follows from above, except that we 
focus on our ability to recover school-level growth estimates from the gap-year models.

Finding 7: School-level growth estimates based on gap-year data convey 
similar information to growth estimates based on all of the 
data, although the accuracy of the gap-year estimates is 
slightly lower for schools than for districts.

First, Figure 7 replicates for schools what we show in Figure 1 for districts. Figure 7 reports the 
baseline correlations between school-level growth estimates with and without the gap year, which 
range from 0.85 to 0.88 in math and 0.84 to 0.86 in ELA, depending on the model. These numbers 
are lower than the analogous values for districts reported in Figure 1, but they are substantively 
similar.

Figure 7. School-level growth estimates over the two-year period spanning the gap 
year, with and without the gap-year data censoring, are highly correlated, although 
the correlations are lower than for districts.
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We also conduct school-level analysis of students by socioeconomic status and find that, as with 
the district analysis (Figure 2), estimates for more and less affluent students based on gap-year 
data are highly correlated with estimates based on the full data. (For more on these results, see 
Figure A3 in Appendix A.)



Results  |  Bridging the Covid Divide

18

Finding 8: The overwhelming majority of schools (85 to 86 percent) do 
not change ranking categories due to the gap year in test data. 

Table 4 shows transition matrices for schools that correspond to the analogous transition matrices 
for districts in Table 3. The results are similar—85 to 86 percent of the weight is along the diagonal. 
This means that the vast majority of schools remain in the same ranking category regardless of 
whether the full data or gap-year data are used. 

Table 4. Transition matrices show that the ranking category does not change for 
most schools due to the gap year in testing (results shown for only the two-step, 
all-controls model for brevity).

Panel A. Math

Gap-year Data Growth Ranking
Bottom 10 Percent Middle 80 Percent Top 10 Percent

Full Data Growth 
Ranking

Bottom 10 Percent 6.0 3.9 0.0
Middle 80 Percent 3.9 72.8 3.3

Top 10 Percent 0.0 3.3 6.7

Panel B. ELA

Gap-year Data Growth Ranking
Bottom 10 Percent Middle 80 Percent Top 10 Percent

Full Data Growth 
Ranking

Bottom 10 Percent 6.6 3.3 0.0
Middle 80 Percent 3.3 73.0 3.7

Top 10 Percent 0.0 3.7 6.4

Notes. Each cell indicates the percentage of Missouri schools for which the ranking profile matches the row and 
column headers. The transition matrices for the other VAMs are very similar to the transition matrices shown here. 
They are suppressed for brevity but can be found in Fazlul et al. (2021).

Finding 9: Most of the changes to schools’ growth rankings caused 
by the gap year are not explained by observable school 
characteristics. 

Figures 8 and 9 explore the ability of observable school characteristics to predict changes in 
school rankings caused by the use of the gap-year data. We use the same regression framework 
and same observable characteristics as in the district-level analysis (Figures 3 and 4), except that 
the analysis is conducted at the school rather than district level. Observable school characteristics 
explain even less of the directional changes in rankings than in the case of districts, but otherwise 
the patterns of estimates are similar to what we show above for districts.
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Figure 8. The variance in rankings as a result of omitting the gap year is not well 
explained by observable school characteristics, and this is especially true for the 
two-step, all-controls model.
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variance in rank changes; a value of 0.0 would indicate that observable school characteristics can explain none of the 
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Figure 9. Most of the volatility in schools’ growth rankings (i.e., the absolute value of 
the ranking changes) caused by the gap year is not explained by observable school 
characteristics.
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Finding 10: For schools, the partial-credit solution to address student 
mobility during the gap period, where we give 50 percent 
weight to the schools attended during and in the year after the 
gap year, modestly improves estimation accuracy relative to 
the baseline approach. 

Figure 10 examines student mobility and replicates the district analysis presented in Figure 6. One 
addition to the analysis is that we distinguish between structural and nonstructural school moves. 
A structural school move is a move that occurs because a school’s grade span has ended. We 
define a structural move as occurring when a student is in the terminal grade of his or her school 
during the gap year—2018 in our simulated environment. A nonstructural move is a move that 
occurs in a nonterminal grade. A large percentage (about 70 percent) of the school movers in our 
analytic sample are structural movers.18

The results in Figure 10 show that the partial-credit solution, where we give 50 percent weight 
to the 2018 and 2019 schools, generally improves estimation accuracy relative to the baseline 
approach. This solution may be more effective in the analysis of schools because there are many 
more school movers, which makes more accurate attribution of their growth more impactful.

Figure 10. Modifying the gap-year model so that it assigns 50-50 credit to mobile 
students during the gap year generally improves the accuracy of the growth estimates 
for schools, albeit modestly.
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What happens if there is a second missing year of data?
Next, we consider the prospects for estimating test-score growth if state testing is cancelled 
again in spring 2021. If this were to happen, there would be a two-year data gap, which would 
necessitate trying to measure growth from 2019 to 2022. In our data, we simulate this situation by 
further censoring our data panel to remove the 2017 test—i.e., the test gap is expanded to include 
both 2017 and 2018. We then estimate test-score growth from 2016 to 2019, replicating the “two-
year gap” condition.

Finding 11: The gap-year model when omitting two years of data produces 
estimates for districts that are highly correlated with estimates 
based on all of the district data, but the estimates are less 
accurate than in the case of a one-year test gap.

Before presenting results for districts, we first discuss a problem with estimating school-level 
growth in the two-year gap scenario. With a two-year gap, many schools will not have any cohorts 
of students who remain in the school and are tested spanning the full gap period. We use the 
2018–19 Common Core of Data to show this problem by identifying the fraction of U.S. schools for 
which growth could be estimated with a two-year gap for at least some student cohorts with start- 
and end-tests in the same school. This requires that the school offer four consecutive grades in 
the grades 3 to 8 span (e.g., a school offering grades K through 5 would not qualify, as it has only 
three consecutive grades in this span, while a school offering grades K through 6 would qualify).19

Just 30 percent of schools offering any grade in the 3 to 8 range have four consecutive grades in 
the 3 to 8 span (Figure 11). Further, the schools that meet the criterion of four consecutive grades 
are smaller on average, and just 27 percent of U.S. students attend such schools. This shows that 
for most schools, and for the schools attended by most students, we cannot credibly estimate 
test-score growth with a two-year test gap.

Figure 11. Just 27 percent of students attend schools that could generate growth 
measures if two consecutive years of tests are missing.
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Although a school-level growth analysis is infeasible with a two-year gap, a district-level analysis 
is possible because most districts contain four consecutive grades in the 3 to 8 range. That said, 
the biggest challenge is that growth can be estimated for even fewer cohorts with a two-year 
test gap. Specifically, students in grades 3, 4, and 5 in the pre-gap year are the only cohorts 
for which an endpoint test score would be available to estimate growth (those in grades 6, 7, 
or 8 in the spring of 2019 will be in high school by 2022 and thus beyond the federal grade-
level testing range). Given that lack of cohort overlap is a key driver of discrepancies in district 
growth estimates with and without the gap year, a prediction is that with a two-year test gap, the 
discrepancy will be larger.

Figure 12 shows that this is indeed the case. With a two-year test gap, the growth estimates from 
2016 to 2019 are less correlated with the three years of summed, single-year estimates than in the 
case of a one-year test-score gap. The correlations in Figure 12 range from 0.78 to 0.84 for districts, 
compared to 0.88 to 0.91 in the scenario of a one-year test gap (Figure 1). The correlations are still 
large and positive, but they indicate a larger degradation of information relative to the full-data 
condition.

Figure 12. In the case of a two-year test gap, district-level growth estimates over 
the three-year period spanning the gap years, with and without the gap-year data 
censoring, are strongly correlated. That said, the gap-year estimates are less accurate 
than in the case of a one-year test gap.

Math ELA

0.5 0.6 0.7 0.8 0.9 1.0
Correlation

1-Step, Sparse

2-Step, Sparse

1-Step, Student Controls

2-Step, Student Controls

2-Step, All Controls

0.5 0.6 0.7 0.8 0.9 1.0
Correlation

1-Step, Sparse

2-Step, Sparse

1-Step, Student Controls

2-Step, Student Controls

2-Step, All Controls

Note. For details on the models, see Methodology.



23

Implications
We show that growth measures spanning a single year with a gap in data can be estimated and 
are highly correlated with those estimated based on the full data. This implies that if testing is 
cancelled for only one year due to Covid (i.e., spring 2020), we have the potential to credibly 
estimate growth over the two-year period for districts and schools alike, spanning the gap year 
with testing data from spring 2019 and spring 2021.

While state and local education agencies may decide to pause the use of growth data for 
accountability purposes during this time, such data would still be useful for understanding where 
learning deficiencies are most pronounced, which district and school policy responses have been 
most effective in minimizing the negative consequences of the pandemic, and which students 
may benefit the most from additional resources and interventions. Importantly, our separate 
analysis for students by socioeconomic status suggests that districts and schools would still be 
able to track achievement gaps and monitor equity for larger student subgroups. 

Though our research design using a simulated gap year offers a credible approach for predicting 
the impacts of the 2020 test stoppage on 2021 growth estimates, we return to the caveat 
mentioned in the introduction that the pandemic, along with schools’ and families’ varied 
responses to it, has likely affected which students will be tested in public schools when testing 
resumes. The compositional effect may also go beyond who is tested and impact the mode 
through which different students are tested—e.g., within a state, some students may take online 
tests while others take in-person tests (and whether online and in-person test data can be 
combined to track student progress is an open question). Due to the high level of uncertainty 
surrounding the composition effect, we do not attempt to model changes to the composition of 
test takers caused by Covid ex ante. We recommend that when spring 2021 tests are administered, 
states keep a close eye on test coverage on a district-by-district and school-by-school basis. 
Depending on the amount of missing data and the degree of selectivity into missingness, test 
coverage may or may not be a significant problem for producing useful estimates of test-score 
growth once testing resumes.

Finally, if testing in spring 2021 is also cancelled, our assessment is that it will not be possible 
to construct useful school-level growth measures spanning the ensuing multiyear gap period, 
although reasonably accurate district-level growth estimates could still be estimated. In order to 
estimate school-level growth, testing this year is necessary. If spring testing is still not possible 
in 2021, some states may consider administering assessments when schools reopen in fall 2021, 
although such a scenario would pose its own logistical, analytic, and political challenges.

***

The Covid pandemic has continually pummeled our schools with challenges over the past year. 
Without data from summative assessments this year, we will lose valuable insight into how 
learning has been affected and which students and schools have been hit hardest. To help 
students recover learning loss and begin to build our schools back as we move beyond this crisis, 
good information about student learning must be a top priority.
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Appendix A:  
Additional analysis
In this appendix, we present results from two additional analyses that inform the prospects for 
using two-year growth as a proxy for a single year of growth, as well as the reliability of student-
subgroup growth estimates within schools.

Two-year growth as a proxy for one-year growth
First, we consider the potential for using growth from 2019 to 2021 to proxy for growth from 
2020 to 2021 (with the latter being unobserved). We simulate this situation with our data by 
correlating gap-year growth estimates with growth estimates from 2018 to 2019. We expect weaker 
correlations in this scenario because the growth metrics no longer span the same time periods. 
Put another way, additional differences in these estimates should emerge because one estimate 
captures growth over a two-year period and the other captures growth over a one-year period.

We find that gap-year growth for districts and schools is strongly correlated with one-year growth 
during the contemporary year, but the timespan inconsistency lowers the correlations relative to 
the comparisons in the main report. Figures A1 and A2 show correlations that correspond to the 
correlations shown in Figures 1 and 7 (for districts and schools, respectively) for this exercise. The 
correlations fall as expected—from about 0.90 into the range of 0.77 to 0.86 for districts and from 
about 0.87 into the range of 0.74 to 0.86 for schools. Note that the correlations fall the most for the 
estimates from the two-step, all-controls model. Although we do not elaborate in detail on this 
discrepancy, a likely explanation is that the less comprehensive models produce estimates that 
are biased due to uncontrolled district and school circumstances.20 Any such bias would persist to 
some degree across years, which would inflate the correlations of these time-mismatched values 
relative to the two-step, all-controls model, where the bias will be smaller (or null).

We provide these estimates as a point of information but do not explore this scenario in more 
detail because it does not have a strong policy rationale. To elaborate briefly, there are no testing 
data in 2020, which means that districts and schools were not rated on growth from 2019 to 2020. 
Rather than ignore that year altogether—which is implicit in this scenario—it seems appropriate 
to calculate growth over the full two-year timespan since the previous set of growth estimates 
were available. This, combined with the fact that we can most credibly estimate growth over the 
two-year span from 2019 to 2021, suggests that the time-consistent application of the gap-year 
model is most useful for policy.
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Figure A1. Gap-year growth for districts is strongly correlated with one-year growth 
during the most recent year, but the timespan inconsistency lowers the correlations 
relative to the preceding comparisons.
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Notes. The reported correlations are between growth estimated from spring 2017 to spring 2019 and growth estimated 
from spring 2018 to spring 2019. This informs a contemporary scenario where growth from spring 2019 to spring 2021 is 
used to proxy for growth from spring 2020 to spring 2021. For details on the models, see Methodology.

Figure A2. Gap-year growth for schools is strongly correlated with one-year growth 
during the most recent year, but the timespan inconsistency lowers the correlations 
relative to the preceding comparisons.
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Notes. The reported correlations are between growth estimated from spring 2017 to spring 2019 and growth estimated 
from spring 2018 to spring 2019. This informs a contemporary scenario where growth from spring 2019 to spring 2021 is 
used to proxy for growth from spring 2020 to spring 2021. For details on the models, see Methodology.
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Student subgroup analysis for schools
In the body of the report, we find that estimates of student subgroup growth within districts 
based on gap-year data for students of higher- and lower-socioeconomic status are highly 
correlated with growth estimates based on all of the data (Figure 2). Here, we replicate this 
analysis for schools, finding a similar result (Figure A3).

Figure A3. For students of varying socioeconomic status, the correlations of the 
school-level growth estimates with and without the gap-year data censoring remain 
high.
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Notes. We refer to students coded as ineligible for free or reduced-price lunch as “more affluent” and 
those who are coded as eligible as “less affluent.” For details on the models, see Methodology.
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Endnotes
1	 Guidance from the U.S. Department of Education indicates no plans to issue waivers from federal testing 

requirements for spring 2021. Andrew Ujifusa, “Betsy DeVos Tells States Not to Expect Waivers From 
Annual Tests,” Politics K–12 (blog), Education Week, September 3, 2020, http://blogs.edweek.org/edweek/
campaign-k-12/2020/09/betsy-devos-annual-tests-not-expect-waivers.html.

2	 Throughout our study, we assess the accuracy of gap-year growth estimates in terms of their ability to match 
growth that would be estimated if there was not a gap year. This approach relies on the assumption that under 
normal testing conditions, growth measures are useful indicators of district and school effectiveness. It is 
outside of the scope of our study to interrogate this assumption; however, there is a large research literature that 
provides evidence in its favor. This is consistent with the common use of growth modeling in education research 
and policy applications today.

3	 Cory Koedel, Kata Mihaly, and Jonah E. Rockoff, “Value-added modeling: A review,” Economics of Education 
Review 47 (August 2015): 180–195, doi:10.1016/j.econedurev.2015.01.006.

4	 The precise specifications we use, along with technical details, are available in the following publication: 
Ishtiaque Fazlul, Cory Koedel, Eric Parsons, and Cheng Qian, “Estimating test-score growth with a gap year in 
the data” (unpublished manuscript, 2021).

5 There are two somewhat common growth-model approaches not directly covered by our analysis: “student 
growth percentiles” and EVAAS®. With regard to the former, although we do not estimate student growth 
percentiles directly, Ehlert, Koedel, Parsons, and Podgursky (2016) show that a linear model using similar 
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